High thermopower and ultra low thermal conductivity in Cd-based Zintl phase compounds.

نویسندگان

  • Tribhuwan Pandey
  • Abhishek K Singh
چکیده

By combining first principles density functional theory and electronic as well as lattice Boltzmann transport calculations, we unravel the excellent thermoelectric properties of Zintl phase compounds ACd2Sb2 (where, A = Ca, Ba, Sr). The calculated electronic structures of these compounds show charge carrier pockets and heavy light bands near the band edge, which lead to a large power factor. Furthermore, we report large Grüneisen parameters and low phonon group velocity indicating essential strong anharmonicity in these compounds, which resulted in low lattice thermal conductivity. The combination of low thermal conductivity and the excellent transport properties give a high ZT value of ∼1.4-1.9 in CaCd2Sb2 and BaCd2Sb2 at moderate p and n-type doping. Our results indicate that well optimized Cd-based Zintl phase compounds have the potential to match the performance of conventional thermoelectric materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport properties of the layered Zintl compound SrZnSb2

Transport properties of the layered Zintl compound SrZnSb2 have been characterized from room temperature to 725 K on polycrystalline samples. SrZnSb2 samples were found to be p-type with a Hall carrier concentration of 5 1020 cm−3 at room temperature, and a small Seebeck coefficient and electrical resistivity are observed. A single band model predicts that, even with optimal doping, significant...

متن کامل

Thermopower enhancement by encapsulating cerium in clathrate cages.

The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathr...

متن کامل

Reduction of lattice thermal conductivity from planar faults in the layered Zintl compound SrZnSb2

The layered Zintl compound SrZnSb2 is investigated using transmission electron microscopy (TEM) to understand the low lattice thermal conductivity. The material displays out-of-phase boundaries with a spacing from 100 down to 2 nm. Density functional theory calculations confirm that the TEM-derived defect structure is energetically reasonable. The impact of these defects on phonon scattering is...

متن کامل

Significantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10nm neck-width

When graphene is shrunk into ~10 nm scale graphene nanoribbons or nanomesh structures, it is expected that not only electrical properties but also thermal conductivity and thermoelectric property are significantly altered due to the quantum confinement effect and extrinsic phonon-edge scattering. Here, we fabricate large-area, sub10 nm singleand bilayer graphene nanomeshes from block copolymer ...

متن کامل

Low-Thermal-Conductivity (MS)1+x(TiS2)2 (M = Pb, Bi, Sn) Misfit Layer Compounds for Bulk Thermoelectric Materials

A series of (MS)1+x(TiS2)2 (M = Pb, Bi, Sn) misfit layer compounds are proposed as bulk thermoelectric materials. They are composed of alternating rock-salt-type MS layers and paired trigonal anti-prismatic TiS2 layers with a van der Waals gap. This naturally modulated structure shows low lattice thermal conductivity close to or even lower than the predicted minimum thermal conductivity. Measur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 26  شماره 

صفحات  -

تاریخ انتشار 2015